- PII
- S3034535980024114825010053-1
- DOI
- 10.7868/S3034535980024114825010053
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 50-64
- Abstract
- Organic matter decomposition is a key process in the carbon cycle that controls the rate of carbon dioxide emission, carbon accumulation in the soil, and the availability of mineral elements for plants. Changes in the forest stand's composition during secondary succession result in changes in the quality of litter, which affects the rate and depth of its transformation. We analysed how the chemical structure of the L-horizons of litter changes from October to August at different stages of secondary succession in typical forest ecosystems of Western Siberia's middle taiga using IR spectrometry and elemental analysis. It turned out that the structure of organic matter in the L-horizons was transformed to the largest degree at intermediate stages of succession (in an aspen forest with a dark coniferous second storey), while at previous (monodominant aspen forests) and subsequent successional stages (mixed and dark coniferous forests), changes were less pronounced. These changes include a decrease in the proportion of relatively easily decomposable components (cellulose and carbohydrates) and accumulation of aromatic compounds and polyesters that are more recalcitrant to decomposition. Aspen forest with the dark coniferous second storey and dark coniferous forest turned out to be the objects with the highest difference in terms of changes in the litter's elemental composition: the ratio of total carbon to nitrogen over the period from October to August increased the least in the former and the most in the latter. This combination of IR spectrometry and elemental analysis results can be explained by differences in the efficiencies of depolymerisation of nitrogen-containing compounds in litter. In general, the obtained results show that litter transformation during decomposition does not always depend only on its initial quality, even in closely located ecosystems where physical conditions are virtually identical. The functioning of the microbial community may be the cause of these differences in transformation at different stages of succession.
- Keywords
- лесные подстилки бореальный лес цикл углерода цикл азота Западная Сибирь
- Date of publication
- 31.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / Под ред. Н.В. Лукиной. М.: Товарищество научных изданий КМК, 2018. 232 с.
- 2. Артемкина Н.А. Взаимосвязи фенольных соединений, танинов, лигнина, азота и углерода в растениях ельников кустарничково-зеленомошных на Кольском полуострове // Лесоведение. 2023. № 1. С. 35-43. https://doi.org/10.31857/S0024114823010047
- 3. Басова Е.В., Лукина Н.В., Кузнецова А.И. и др. Качество древесного опада как информативный индикатор функциональной классификации лесов // Вопросы лесной науки. 2022. Т. 5. № 3. С. 1-21. https://doi.org/10.31509/2658-607x-202252-113
- 4. Березин Г.В., Капица Е.А., Шорохова Е.В. Современные представления о разложении древесного опада в лесных экосистемах // Леса России: политика, промышленность, наука, образование. 2023. С. 118-120.
- 5. Богатырев Л.Г. О классификации лесных подстилок // Почвоведение. 1990. № 3. С. 118-127.
- 6. Иванов А.В. Запасы лесных подстилок в кедрово-широколиственных лесах Южного Сихотэ-Алиня // Сибирский лесной журнал. 2015. № 5. С. 87-95. https://doi.org/10.15372/SJFS20150507
- 7. Иванов А.В., Браун М., Замолодчиков Д.Г., Лынов Д.В., Панфилова Е.В. Лесные подстилки как звено цикла углерода хвойно-широколиственных насаждений Южного Приморья // Почвоведение. 2018. № 10. С. 1226-1233. https://doi.org/10.1134/S0032180X18100052
- 8. Иванова Е.А. Формирование и разложение древесного опада в лесных экосистемах в фоновых условиях и при аэротехногенном загрязнении // Вопросы лесной науки. 2021. Т. 4. № 3. С. 1-52. https://doi.org/10.31509/2658-607x-202143-87
- 9. Кобак К.И. Биотические компоненты углеродного цикла. Л.: Гидрометеоиздат, 1988. 248 c.
- 10. Кузнецов М.А. Влияние условий разложения и состава опада на характеристики и запас подстилки в среднетаежном чернично-сфагновом ельнике // Лесоведение. 2010. № 6. С. 54-60.
- 11. Лукина Н.В. Глобальные вызовы и лесные экосистемы // Вестник РАН. 2020. Т. 90. № 6. С. 528-532. https://doi.org/10.31857/S0869587320060080
- 12. Семенов В.М., Тулина А.С., Семенова Н.А., Иванникова Л.А. Гумификационные и негумификационные пути стабилизации органического вещества в почве (обзор) // Почвоведение. 2013. № 4. С. 393-407. https://doi.org/10.7868/S0032180X13040114
- 13. Adamczyk B. How do boreal forest soils store carbon? // BioEssays. 2021. V. 43. № 7. P. 2100010. https://doi.org/10.1002/bies.202100010
- 14. Angst G., Mueller K.E., Nierop K.G.J., Simpson M.J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter // Soil Biology and Biochemistry. 2021. V. 156. P. 108189. https://doi.org/10.1016/j.soilbio.2021.108189
- 15. Canadell J.G., Monteiro P.M.S., Costa M.H. et al. Global carbon and other biogeochemical cycles and feedbacks // Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 2021. P. 673-816.
- 16. Cotrufo M.F., Galdo I.D. Piermatteo D. Litter decomposition: Concepts, methods and future perspectives // Soil Carbon Dynamics: An Integrated Methodology. Cambridge: Cambridge University Press, 2010. P. 76-90.
- 17. Cotrufo M.F., del Galdo I. Litter decomposition: Concepts, methods and future perspectives. // Soil Carbon Dynamics. 2009. P. 76-90.
- 18. Fernández-Alonso M.J., Yuste J.C., Kitzler B., Ortiz C. Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles // Soil Biology and Biochemistry. 2018. V. 120. P. 200-211. https://doi.org/10.1016/j.soilbio.2018.02.013
- 19. Ge X., Zeng L., Xiao W., Huang Z., Geng X., Tan B. Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review // Acta Ecologica Sinica. 2013. V. 33. № 2. P. 102-108. https://doi.org/10.1016/j.chnaes.2013.01.006
- 20. Grabska J., Beć K.B., Huck C.W. Current and future applications of IR and NIR spectroscopy in ecology, environmental studies, wildlife and plant investigations // Comprehensive Analytical Chemistry. 2021. V. 98. P. 45-76. https://doi.org/10.1016/bs.coac.2020.08.002
- 21. Heller C., Ellerbrock R.H., Roßkopf N., Klingenfuß C., Zeitz J. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity // European Journal of Soil Science. 2015. V. 66. № 5. P. 847-858. https://doi.org/10.1111/ejss.12279
- 22. Hodgkins S.B., Richardson C.J., Dommain R. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance // Nature Communications. 2018. V. 9. № 1. P. 3640. https://doi.org/10.1038/s41467-018-06050-2
- 23. Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. Wildfires in the Siberian taiga // Ambio. 2021. V. 50. № 11. P. 1953-1974. https://doi.org/10.1007/s13280-020-01490-x
- 24. Kupriianova I.V., Kaverin A.A., Filippov I.V. et al. The main physical and geographical characteristics of the Mukhrino field station area and its surroundings // Environmental Dynamics and Global Climate Change. 2022. V. 13. № 4. P. 215-252. https://doi.org/10.18822/edgcc240049
- 25. Laganière J., Pare D., Bradley R.L. How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions // Canadian Journal of Forest Research. 2010. V. 40. № 3. P. 465-475.
- 26. Legendre P., Legendre L. Numerical ecology // Developments in Environmental Modelling. V. 24. Amsterdam: Elsevier Science BV, 2012. 989 p.
- 27. Pandey K.K., Pitman A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi // International Biodeterioration and Biodegradation. 2003. V. 52. № 3. P. 151-160. https://doi.org/10.1016/S0964-8305 (03)00052-0
- 28. Prăvălie R. Major perturbations in the Earth's forest ecosystems. Possible implications for global warming // Earth-Science Reviews. 2018. V. 185. P. 544-571. https://doi.org/10.1016/j.earscirev.2018.06.010
- 29. Reuter H., Gensel J., Elvert M., Zak D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine // Biogeosciences. 2020. V. 17. № 2. P. 499-514. https://doi.org/10.5194/bg-17-499-2020
- 30. Soong J.L., Parton W.J., Calderon F., Campbell E.E., Cotrufo M.F. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition // Biogeochemistry. 2015. V. 124. № 1-3. P. 27-44. https://doi.org/10.1007/s10533-015-0079-2
- 31. Volkov D.S., Rogova O.B., Proskurnin M.A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities // Agronomy. 2021. V. 11. № 9. P. 1879. https://doi.org/10.3390/agronomy11091879
- 32. Wardle D.A., Bardgett R.D., Klironomos J.N et al. Ecological linkages between aboveground and belowground biota // Science. 2004. V. 304. № 5677. P. 1629-1633. https://doi.org/10.1126/science.1094875
- 33. Yang K., Zhu J., Zhang W. et al. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects // Journal of Ecology. 2022. V. 110. № 7. P. 1673-1686. https://doi.org/10.1111/1365-2745.13902
- 34. Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M. et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations // Ecological Monographs. 2015. V. 85. № 2. P. 133-155. https://doi.org/10.1890/14-0777.1
- 35. Zhang K., Cheng X., Dang H. et al. Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment // Soil Biology and Biochemistry. 2013. V. 57. P. 803-813. https://doi.org/10.1016/j.soilbio.2012.08.005