- PII
- S30345359S0024114825030055-1
- DOI
- 10.7868/S3034535925030055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 349-358
- Abstract
- Studying the growth of woody plants is extremely important due to the need to assess the response of vegetation to the ongoing climate change, especially in the mountainous regions of the Subarctic, where an increase in surface air temperature has been observed in recent decades. This paper presents the results of a study of the radial growth patterns of Dahurian larch (Larix gmelinii (Rupr.) Rupr.) at four altitudinal levels of the forest — mountain tundra ecotone on the Putorana Plateau slopes of western and eastern exposures. A comparative analysis of the radial growth magnitude and dynamics of trees belonging to 4 different age groups in forest stands of different density and altitudinal position was carried out. It was found that the radial increment's sensitivity was higher in older trees, indicating that climatic factors had the greatest impact on their growth. It was discovered that young trees of the same age at higher hypsometric levels had higher morphometric characteristics values compared to those growing down the slope in more closed-up stands. The results of the study showed that intraspecific competition under these conditions had a greater impact on the growth of young trees than climatic factors. It was found that, while the climatic conditions in the study area underwent general improvement, no increase in the width of annual rings was observed in adult trees in recent decades. It was found that morphometric parameters and the width of annual rings in young trees had greater values on slopes of the eastern rather than the western exposure.
- Keywords
- верхняя граница леса радиальный прирост плато Путорана изменение климата Larix gmelinii (Rupr.) Rupr.
- Date of publication
- 27.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 26
References
- 1. Atlas SSSR / Pod red. V.V. Tochnova. M.: GUGK, 1983, 260 s.
- 2. Ben'kova V.E., Shashkin A.V., Naurzbaev M.M., Prokushkin A.S., Siman'ko V.V. Znachenie mikroekologicheskikh uslovii dlya rosta listvennitsy Gmelina v ekotone verkhnei granitsy lesa na poluostrove Taimyr // Lesovedenie. 2012. № 4. S. 73—84.
- 3. Ben'kova A.V., Mashukov D.A., Ben'kova V.E., Prokushkin A.S., Shashkin A.V. Znachenie ekspozitsii sklonov dlya rosta listvennitsy Gmelina v merzlotnykh usloviyakh Srednei Sibiri I. Razlichiya v dinamike radial'nogo prirosta derev'ev na sklonakh severnoi i yuzhnoi ekspozitsii // Sibirskii lesnoi zhurnal. 2015. № 4. S. 18—29.
- 4. Vaganov E.A., Kruglov V.B., Vasil'ev V.G. Dendrokhronologiya: uchebnoe posobie. Krasnoyarsk: Sibirskii federal'nyi universitet, 2008. 120 s.
- 5. Gorchakovskij P.L., Shiyatov S.G. Fitointikatsiya uslovii sredy i prirodnykh protsessov v vysokogor'yakh. M.: Nauka, 1985. 208 s.
- 6. Kuvaev V.B. Vysotnoe raspredelenie rastenii v gorakh Putorana. L.: Nauka, 1980. 262 s.
- 7. Matveev S.M., Gupalov D.I. Lesovodstvennyi i dendroklimaticheskii analiz sostoyaniya nasazhdeni listvennitsy Gmelina zapadnoi chasti plato Putorana // Lesotekhnicheskii zhurnal. 2015. T. 5. № 3. S. 54—65.
- 8. Moiseev P.A., Bartysh A.A., Nagimov Z.Y. Izmeneniya klimata i dinamika drevoostoev na verkhnem predele ikh proizrastaniya v gorakh Severnogo Urala // Ekologiya. 2010. № 6. S. 432—443.
- 9. Norin B.N., Belorusova Zh.M., Berezovskij V.A. Gornye fitotsenoticheskie sistemy Subarktiki. L.: Nauka, 1986. 292 s.
- 10. Parmuzin Yu.P. Sovremennye rel'efoobrazuyushchie protsessyi genezis ozernykh kotlovina // Putoranskaya ozernaya provintsiya. Novosibirsk: Nauka, 1975. Gl. 5. S. 64—97.
- 11. Tabakova M.A., Kirdyanov A.V., Bryukhanova M.V., Prokushkin A.S. Zavisimost' prirosta listvennitsy Gmelina na severe Srednei Sibiri ot lokal'nykh uslovii proizrastaniya // Zhurnal SFU. Biologiya. 2011. № 4. S. 314—324.
- 12. Shiyatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S., Naurzbaev M.M., Khantemirov R.M. Metody dendrokhronologii. Chast' I. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol'tsevoi informatsii. Krasnoyarsk: KrasGU, 2000. 80 s.
- 13. Abaimov A.P., Zyryanova O.A., Prokushkin S.G., Koike T., Matsuura Y. Forest ecosystems of the cryolithic zone of Siberia: regional features. mechanisms of stability and pyrogenic changes // European Journal of Forest Research. 2000. № 1. P. 1—10.
- 14. Büntgen U., Trnka M., Krusic P.J. et al. Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europe // Climate. 2015. № 22. S. 5272—5288.
- 15. Chapin F.S., Sturm M., Serreze M.C. et al. Role of land-surface changes in arctic summer warming // Science. 2005. V. 310. № 41. P. 657—660.
- 16. Cook E.R., Peters K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies // Tree-Ring Bulletin. 1981. № 41. P. 45—53.
- 17. Cook E.R. A time series analysis approach to tree-ring standardization: dissertation. University of Arizona, 1985. 171 p.
- 18. Dearborn K.D., Danby R.K. Aspect and slope influence plant community composition more than elevation across forest–tundra ecotones in subarctic Canada // Journal of Vegetation Science. 2017. V. 28. № 3. P. 595—604.
- 19. Devi N.M., Kukarski H.V. et al. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains // Forest Ecosystem. 2020. V. 7. P. 1—16.
- 20. Grigoriev A.A., Shalaumova Y.V., Vyukhin S.O. et al. Upward Treeline Shifts in Two Regions of Subarctic Russia Are Governed by Summer Thermal and Winter Snow Conditions // Forests. 2022. V. 13. № 2: 174.
- 21. Hagedorn F., Shiyatov S.G., Mazepa S.G. et al. Treeline advances along the Urals mountain range — driven by improved winter conditions? // Global Change Biology. 2014. V. 20. № 11. P. 3530—3543.
- 22. Holmes R.L. Program COFECHA: Version 3. Tucson: The University of Arizona, 1992.
- 23. IPCC. Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Ed. Masson-Delmotte V. et al. Cambridge. United Kingdom and New York. NY. USA: Cambridge University Press, 2021. P. 3—32.
- 24. Jiao L., Jiang Y., Wang M. et al. Age-Effect Radial Growth Responses of Picea schrenkiana to Climate Change in the Eastern Tianshan Mountains // Forests. 2017. V. 8. № 9: 294.
- 25. Kirdyanov A.V., Hagedorn F., Knorre A.A. et al. 20th century treeline advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia // Boreas. 2012. Vol. 41. № 1. P. 56—67.
- 26. Pauli H., Gottfried M., Dullinger S. et al. Recent plant diversity changes on Europe's mountain summits // Science. 2012. № 336. P. 353—355.
- 27. Prokushkin A.S., Kajimoto T., Prokushkin S.G. et al. Climatic factors influencing fluxes of dissolved organic carbon from forest floor in a continuous-permafrost Siberian watershed // Canadian Journal of Forest Research. 2005. V. 35. № 9. P. 2130—2140.
- 28. Rantanen M., Karpechko A.Y., Lipponen A. et al. The Arctic has warmed nearly four times faster than the globe since 1979 // Communications Earth & Environment. 2022. V. 3. № 1. P. 1—10.
- 29. Zyryanova O.A., Shitova S.A. Spatial distribution regularities of the Central Evenkian larch forests: a cartographic model // Proceedings of the Fourth Symposium on the Joint Siberian Permafrost Studies between. Sapporo: The Institute of Low Temperature Science, 1999. P. 65—71.