- PII
- S30345359S0024114825020104-1
- DOI
- 10.7868/S3034535925020104
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 275-289
- Abstract
- Boreal forests are the most important reservoirs of terrestrial carbon. Their wood makes up to 30-35% of their overall carbon stock, making their inventory a task of national importance. The world practice of recent decades is scaling the forest inventory data using unmanned aerial vehicles (UAVs), which are an effective and inexpensive means of collecting information at the level of individual biogeocoenoses. The variety of survey and processing methods requires finding optimal approaches to wood stock inventory using UAVs. The article is dedicated to comparing two methods (Matlab - ML and TerraScan - TS) of estimating the number, height and projective cover of tree crowns by processing point clouds of laser reflections of different densities (100 and 2800 points / m; ML, ML and TS, TS). Lidar survey was carried out on three 50 × 50 metres sample plots. SP 1 - forest crossed by a stream; SP 2 - forest on a flat surface; SP 3 - forest bordering an oligotrophic swamp. The number of trees identified using ML / ML for SPs 1, 2 and 3 was: 55 / 66, 67 / 87 and 174 / 220; while using TS and TS resulted in following numbers: 66 / 95, 85 / 156 and 82 /166 respectively. The average tree height reaches 10-24 m, with little difference between the two processing methods at each site. The total projective crown cover for SPs 1, 2 and 3 was 2569, 2494 and 2059 m in ML; 2091, 2424 and 1506 m in TS. During remote assessment, only the first storey trees’ number could be estimated with a sufficient degree of completeness: for this task, the ML method was sufficient. However, for a more comprehensive inventory of trees, including lower storeys, it is preferable to use TS, under the condition of an adequate selection of the minimum tree height parameter’s value.
- Keywords
- лидар облако точек лазерных отражений БВС беспилотное воздушное судно Matlab TerraScan
- Date of publication
- 05.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.
- 2. Замолодчиков Д.Г., Грабовский В.И., Краев Г.Н. Динамика бюджета углерода лесов России за два последних десятилетия // Лесоведение. 2011. № 6. С. 16-28.
- 3. Замолодчиков Д.Г., Грабовский В.И., Честных О.В. Динамика баланса углерода в лесах федеральных округов Российской Федерации // Вопросы лесной науки. 2018. Т. 1. № 1. С. 1-24.
- 4. Иванов К.Е., Новиков С.М. Болота Западной Сибири, их строение и гидрологический режим. Л.: Гидрометеоиздат, 1976. 447 с.
- 5. Пинаевская Е.А. Рост разных форм сосны обыкновенной (Pinus sylvestris L.) на болотных почвах северной тайги // Вестник Красноярского государственного аграрного университета. 2016. № 11. С. 163-170.
- 6. Приказ Федерального агентства лесного хозяйства от 6 мая 2022 г. № 556 “Об утверждении Регламента организации и проведения мероприятий по государственной инвентаризации лесов центральным аппаратом Рослесхоза, территориальными органами Рослесхоза и подведомственными Рослесхозу организациями”. URL: https://rosleshoz.gov.ru/doc/пр_№556_2022.05.06 (дата обращения: 14.01.2024).
- 7. Сочилова Е.Н., Сурков Н.В., Ершов Д.В., Хамедов В.А. Оценка запасов фитомассы лесных пород по спутниковым изображениям высокого пространственного разрешения (на примере лесов Ханты-Мансийского АО) // Вопросы лесной науки. 2018. Т. 1. № 1. С. 1-23.
- 8. Тюрин А.В. Таксация леса. М.: Государственное лесотехническое изд-во, 1938. 300 с.
- 9. Указ Президента Российской Федерации от 4 ноября 2020 г. № 666 “О сокращении выбросов парниковых газов”. URL: http://www.kremlin.ru/acts/bank/45990 (дата обращения: 13.08.2024).
- 10. Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.Ф. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123-132.
- 11. Anderson K., Gaston K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology // Frontiers in Ecology and the Environment. 2013. V. 11. № 3. P. 138-146.
- 12. Brede B., Calders K., Lau A., Raumonen P., Bartholomeus H.M., Herold M., Kooistra L. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR // Remote Sensing of Environment. 2019. V. 233. Article № 111355.
- 13. Brede B., Terryn L., Barbie, N., Bartholomeus H.M., Bartolo R., Calders K., Derroire G., Krishna Moorthy S.M., Lau A., Levick S.R., Raumonen P., Verbeeck H., Wang D., Whiteside T., van der Zee J., Herold M. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning // Remote Sensing of Environment. 2022. V 280. Article № 113180.
- 14. Cao L., Liu H., Fu X., Zhang Z., Shen X., Ruan H. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests // Forests. 2019. V. 10. № 2. Article № 145.
- 15. Chen Q., Baldocchi D., Gong P., Kelly M. Isolating individual trees in a savanna woodland using small footprint lidar data // Photogrammetric Engineering and Remote Sensing. 2006. V. 72. № 8. P. 923-932.
- 16. Dixon R.K., Solomon A.M., Brown S., Houghton R.A., Trexier M.C., Wisniewski J. Carbon pools and flux of global forest ecosystems // Science. 1994. V. 263. № 5144. P. 185-190.
- 17. Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data. https://www.mathworks.com/help/lidar/ug/extraction-of-forest-metrics-and-individual-tree-attributes.html).
- 18. Ganz S., Käber Y., Adler P. Measuring tree height with remote sensing - A comparison of photogrammetric and LiDAR data with different field measurements // Forests. 2019. V. 10. № 8. Article № 694.
- 19. Gyawali A., Aalto M., Peuhkurinen J., Villikka M., Ranta T. Comparison of individual tree height estimated from LiDAR and digital aerial photogrammetry in young forests // Sustainability. 2022. V. 14. № 7. Article № 3720.
- 20. Hyyppä E., Yu X., Kaartinen H., Hakala T., Kukko A., Vastaranta M., Hyyppä J. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests // Remote Sensing. 2020. V.12. № 20. Article № 3327.
- 21. Ilyasov D.V., Kaverin A.A., Zhernov S.N., Glagolev M.V., Niyazova A.V., Kupriianova I.V., Filippov I.V., Terentieva I.E., Sabrekov A.F., Lapshina E.D. Estimation of tree cover height on oligotrophic bog based on UAV lidar surveying // Environmental Dynamics and Global Climate Change. 2023. V. 14. № 4. P. 237-248.
- 22. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. 184 p. DOI 10.59327/IPCC/AR6-9789291691647
- 23. Kupriianova I.V., Kaverin A.A., Filippov I.V., Ilyasov D.V., Lapshina E.D., Logunova E.V., Kulyabin M.F. The main physical and geographical characteristics of the Mukhrino field station area and its surroundings // Environmental Dynamics and Global Climate Change. 2022. V. 13. № 4. P. 215-252.
- 24. Kuželka K., Slavík M., Surový P. Very high density point clouds from UAV laser scanning for automatic tree stem detection and direct diameter measurement // Remote Sensing. 2020. V. 12. № . 8. Article № 1236.
- 25. Lister A.J., Andersen H., Frescino T., Gatziolis D., Healey S., Heath L.S., Liknes G.C., McRoberts R., Moisen G.G., Nelson M., Riemann R., Schleeweis K., Schroeder T.A., Westfall J., Wilson B.T. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the United States national forest inventory // Forests. 2020. V. 11. № 12. Article № 1364.
- 26. Mielcarek M., Stereńczak K., Khosravipour A. Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation // International Journal of Applied Earth Observation and Geoinformation. 2018. V. 71. P. 132-143.
- 27. Puliti S., Breidenbach J., Schumacher J., Hauglin M., Klingenberg T.F., Astrup R. Above-ground biomass change estimation using national forest inventory data with Sentinel 2 and Landsat // Remote Sensing of Environment. 2021. V. 265. Article № 112644.
- 28. Reese H., Nilsson M., Sandström P., Olsson H. Applications using estimates of forest parameters derived from satellite and forest inventory data // Computers and Electronics in Agriculture. 2002. V. 37. № 3. P. 37-55.
- 29. Rogers S.R., Manning I., Livingstone W. Comparing the spatial accuracy of digital surface models from four unoccupied aerial systems: Photogrammetry versus LiDAR // Remote Sensing. 2020. V. 12. № 17. Article № 2806.
- 30. Sibona E., Vitali A., Meloni F., Caffo L., Dotta A., Lingua E., Motta R., Garbarino M. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy // Forests. 2016. V. 8. № 1. Article № 7.
- 31. Sun W., Liu X. Review on carbon storage estimation of forest ecosystem and applications in China // Forest Ecosystems. 2020. V. 7. № 1. P. 1-14.
- 32. Wallace L., Lucieer A., Watson C., Turner D. Development of a UAV-LiDAR system with application to forest inventory // Remote Sensing. 2012. V. 4. № . 6. P. 1519-1543.
- 33. Wang D., Wan B., Liu J., Su Y., Guo Q., Qiu P., Wu X. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel 2 imagery // International Journal of Applied Earth Observation and Geoinformation. 2020. V. 85. Article № 101986.
- 34. Zhao K., Suarez J.C., Garcia M., Hu T., Wang C., Londo A. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux // Remote Sensing of Environment. 2018. V. 204. P. 883-897.